Elemental Distribution in Reproductive and Neural Organs of the Epilachna nylanderi (Coleoptera: Coccinellidae), a Phytophage of Nickel Hyperaccumulator Berkheya coddii (Asterales: Asteraceae) by micro-PIXE

نویسندگان

  • Jolanta Mesjasz-Przybyłowicz
  • Elżbieta Orłowska
  • Maria Augustyniak
  • Mirosław Nakonieczny
  • Monika Tarnawska
  • Wojciech Przybyłowicz
  • Paweł Migula
چکیده

The phenomenon of metal hyperaccumulation by plants is often explained by a pathogen or herbivore defense hypothesis. However, some insects feeding on metal hyperaccumulating plants are adapted to the high level of metals in plant tissues. Former studies on species that feed on the leaves of Berkheya coddii Roessler 1958 (Asteraceae), a nickel-hyperaccumulating plant, demonstrated several protective mechanisms involved in internal distribution, immobilization, and elimination of Ni from the midgut and Malpighian tubules. These species are mainly coleopterans, including the lady beetle, Epilachna nylanderi (Mulsant 1850) (Coleoptera: Coccinellidae), collected from the ultramafic ecosystem near Barberton in South Africa. By performing particle-induced X-ray emission microanalysis elemental microanalysis (PIXE), this study examined whether Ni may be harmful to internal body systems that decide on insect reactivity (central nervous system [CNS]), their reproduction, and the relationships between Ni and other micronutrients. Data on elemental distribution of nine selected elements in target organs of E. nylanderi were compared with the existing data for other insect species adapted to the excess of metals. Micro-PIXE maps of seven regions of the CNS showed Ni mainly in the neural connectives, while cerebral ganglia were better protected. Concentrations of other bivalent metals were lower than those of Ni. Testis, compared with other reproductive organs, showed low amounts of Ni. Zn was effectively regulated at physiological dietary levels. In insects exposed to excess dietary Zn, it was also accumulated in the reproductive organs. Comparison of E. nylanderii with other insects that ingest hyperaccumulating plants, especially chrysomelid Chrysolina clathrata (Clark) (Coleoptera: Chrysomelidae), showed lower protection of the CNS and reproductive organs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Host plant selection of Chrysolina clathrata (Coleoptera: Chrysomelidae) from Mpumalanga, South Africa

Hyperaccumulated elements such as Ni may defend plants against some natural enemies whereas other enemies may circumvent this defense. The Ni hyperaccumulator Berkheya coddii Roessler (Asteraceae) is a host plant species for Chrysolina clathrata (Clark), which suffers no apparent harm by consuming its leaf tissue. Beetle specimens collected from B. coddii had a whole body Ni concentration of 26...

متن کامل

Host-herbivore studies of Stenoscepa sp. (Orthoptera: Pyrgomorphidae), a high-Ni herbivore of the South African Ni hyperaccumulator Berkheya coddii (Asteraceae)

Nymphs of Stenoscepa sp. feed on leaves of the Ni hyperaccumulator Berkheya coddii at serpentine sites in Mpumalanga Province, South Africa. These sites contain Ni hyperaccumulators, Ni accumulators, and plants with Ni concentrations in the normal range. We conducted studies to: (i) determine the whole-body metal concentration of nymphs (including those starved to empty their guts); (ii) compar...

متن کامل

Metal concentrations of insects associated with the South African Ni hyperaccumulator Berkheya coddii (Asteraceae)

The high levels of some metals in metal hyperaccumulator plants may be transferred to insect associates. We surveyed insects collected from the South African Ni hyperaccumulator Berkheya coddii to document whole-body metal concentrations (Co, Cr, Cu, Mg, Mn, Ni, Pb, Zn). We also documented the concentrations of these metals in leaves, stems and inflorescences, finding extremely elevated levels ...

متن کامل

Nickel and cobalt phytoextraction by the hyperaccumulator Berkheya coddii: implications for polymetallic phytomining and phytoremediation.

We investigated the potential of the South African high-biomass Ni hyperaccumulator Berkheya coddii to phytoextract Co and/or Ni from artificial metalliferous media. Plant accumulation of both metals from single-element substrates indicate that the plant/media metal concentration quotient (bioaccumulation coefficient) increases as total metal concentrations increase. Cobalt was readily taken up...

متن کامل

Root responses to soil Ni heterogeneity in a hyperaccumulator and a non-accumulator species.

We compared root responses of the Ni-hyperaccumulator plant Berkheya coddii Rossler with the non-accumulator plant Cicer arietinum L. to Ni heterogeneity in soil. We grew plants in growth containers filled with control soil, homogeneously spiked, and heterogeneously spiked soil with Ni concentrations of 62 and 125 mg kg(-1). Neutron radiography (NR) was used to observe the root distribution and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014